〔問題 I 〕(配点 25)

(1)
$$(\sqrt{5} + \sqrt{2})^2 - (\sqrt{5} - \sqrt{2})^2$$
 を計算せよ。

$$\left(\sqrt{5}+\sqrt{2}\right)^2-\left(\sqrt{5}-\sqrt{2}\right)^2=$$
 ア $\sqrt{$ イウ

(2) 不等式 |2x-3| > 4 を解け。

(3) 2次方程式 $x^2 - 4x - 5 = 0$ を解け。

$$x = \boxed{77}$$
, $x = \boxed{3}$

(4) 方程式 $2^{x+2} - 16 = 0$ を解け。

$$x = \boxed{ }$$

(5) 方程式 $2\log_2 x = 4$ を解け。

〔問題Ⅱ〕(配点 25)

(1) 点 A(2,3) に関して, 点 P(4,6) と対称な点 Q の座標を求めたい。 点 Q の座標を (a, b) とすると, 線分 PQ の中点が点 A であるから

よって, 点 Q の座標は (**キ** , **ク**)

- (2) 2 直線 x+y-4=0, x-2y+2=0 の交点と点 (4, 5) を通る直線の方程式を求めたい。
 - **2** 直線の交点の座標は (**ケ**, **コ**) である。

求める直線の方程式は
$$y =$$
 $y =$ $y =$ $y =$ $y =$ $y =$ $y =$

(3) グラフが x 軸と 2 点 (-1,0), (3,0) で交わり, y 軸と点 (0,-6) で交わる 放物線になるような 2 次関数を求めよ。

$$y = \begin{bmatrix} \mathbf{t} \\ \mathbf{x}^2 - \end{bmatrix} \mathbf{y} \mathbf{x} - \begin{bmatrix} \mathbf{s} \\ \mathbf{s} \end{bmatrix}$$

(5) 円 $x^2 + y^2 = 5$ 上の点 P(2, 1) における接線の方程式を求めよ。

$$\boxed{\mathbf{x}} x + \boxed{\mathbf{x}} y = 5$$

〔問題Ⅲ〕(配点 25)

(1) $0 \le \theta < 2\pi$ のとき、不等式 $\cos \theta < \frac{1}{\sqrt{2}}$ を満たす θ の値の範囲を求めよ。

(2) α が第2象限, β が第1象限の角で, $\sin \alpha = \frac{4}{5}$, $\sin \beta = \frac{12}{13}$ のとき, $\cos(\alpha + \beta)$ の値を求めよ。

$$\cos(\alpha + \beta) = -\frac{\boxed{\frac{1}{1}}}{\boxed{\frac{1}{1}}}$$

 \triangle ABC において、頂点 A、B、C に対する辺の長さを、それぞれ a、b、c と書き、 \angle A、 \angle B、 \angle C の大きさを、それぞれ A、B、C と書くことにする。

(3) \triangle ABC において、 $A=45^\circ$ 、 $B=15^\circ$ 、 $c=\sqrt{6}$ のとき、a および三角形の外接円の 半径 R を求めよ。

$$a = \boxed{7}$$
, $R = \sqrt{\boxed{3}}$

- (4) \triangle ABC において、 $A=30^\circ$ 、b=4、c=9 のとき、この三角形の面積 S を求めよ。 $S=\boxed{ \ \ \, }$
- (5) \triangle ABC において、a=7、b=8、c=5 のとき、この三角形の内接円の半径 r を求めたい。

余弦定理により、
$$\cos A =$$
 $\overline{$ $\overline{ }$ $\overline{ }$ $\overline{ }$

この三角形の面積をSとすると, $S = \boxed{$ セソ $}$ r

よって
$$r = \sqrt{$$
 タ

〔問題IV〕(配点 20)

(1) 関数 $f(x) = 2x^3 + 3x + 1$ を微分すると

$$f'(x) =$$
 ア $x^2 +$ イ $x +$ ウ となる。

また, x=1 における微分係数は \Box である。

- (2) 関数 $f(x) = x^3 6x^2 + 12$ は,x = **オ** で極大値 **カキ** をとり,x = **ク** で極小値 **ケコサ** をとる。
- (3) 定積分 $\int_{-1}^{4} |x-2| dx$ を求めよ。 $\int_{-1}^{4} |x-2| dx = \int_{-1}^{2} \{-(x-2)\} dx + \int_{2}^{4} (x-2) dx$ $= \frac{2 + 2}{2}$
- (4) 放物線 $y=3x^2-3x-6$ と x 軸で囲まれた図形の面積 S を求めたい。 放物線と x 軸との交点の x 座標は x= タチ , x= ツ

〔問題V〕(配点 5)

データ 2, 5, 6, 8, 9 の平均値 \overline{x} と分散 s^2 を求めよ。

$$\overline{x} = \boxed{7}$$
 , $s^2 = \boxed{4}$