〔問題 I〕(配点 25)

次の問いに答えよ。答えは計算の途中も含めて解答用紙の解答欄に記入すること。

- (1) $\left(\frac{1}{\sqrt{2}-1}\right)^2 + \left(\frac{1}{\sqrt{2}+1}\right)^2$ を計算せよ。
- (2) $x^2 y^2 4y 4$ を因数分解せよ。
- (3) 整式 $4x^3 + 3x^2 + 3x + 4$ を整式 x + 1 で割り、商と余りを求めよ。
- (4) 不等式 |3-3x| < 9 を解け。
- (5) 2 次方程式 $x^2 3\sqrt{3}x + 6 = 0$ を解け。

〔問題Ⅱ〕(配点 25)

次の問いに答えよ。答えは計算の途中も含めて解答用紙の解答欄に記入すること。

- (1) 2 次関数 $y = 2x^2$ のグラフを x 軸方向に -5, y 軸方向に 3 だけ平行移動した 放物線をグラフとする 2 次関数を求めよ。
- (2) 2 次関数のグラフ $y = -3x^2 + 18x 22$ の軸と頂点を求めよ。
- (3) 2 次不等式 $-x^2 + 6x 4 > 0$ を解け。
- (4) 円 $x^2 + y^2 = 100$ と直線 y = 2x + n が共有点をもつように、定数 n の値の範囲を定めよ。
- (5) 2 次関数 $y = x^2 + mx + 2m + 12$ において, y の値がつねに正であるように, 定数 m の値の範囲を定めよ。

〔問題Ⅲ〕(配点 25)

次の問いに答えよ。答えは計算の途中も含めて解答用紙の解答欄に記入すること。

- (1) cos 120° cos 315° cos 240° sin 135° の値を求めよ。
- (2) $0^{\circ} \le \theta < 180^{\circ}$ のとき、方程式 $\sin \theta = \frac{1}{\sqrt{2}}$ を解け。
- (3) $0^{\circ} \le \theta < 360^{\circ}$ のとき,不等式 $\tan \theta < 1$ を解け。
- (4) $\tan \theta = 2$ のとき $\frac{1}{1+\sin \theta} + \frac{1}{1-\sin \theta}$ の値を求めよ。
- (5) $0^{\circ} \le \theta < 360^{\circ}$ のとき、関数 $y = 2\cos\theta 3$ の最大値と最小値を求めよ。

〔問題IV〕(配点 25)

次の問いに答えよ。答えは計算の途中も含めて解答用紙の解答欄に記入すること。

- (1) x の値が 1 から 4 まで変わるとき, 関数 $f(x) = x^2 2x 1$ の平均変化率を求めよ。
- (2) 曲線 $y = x^3 + x 2$ 上の点 (2,8) における接線の方程式を求めよ。
- (3) 関数 $f(x) = x^3 + ax^2 + bx + 2$ が x = -3 で極大となり, x = 1 で極小となるように定数 a, b の値を定めよ。
- (4) 定積分 $\int_{-3}^{3} (x^2 + 8x + 16) dx$ を求めよ。
- (5) 放物線 $y = x^2 3x$ と x 軸で囲まれた図形の面積 S を求めよ。